

Preliminary Analysis

of the

Triana Flight Software

for use on

OMNI/Flatsat

Prepared by

Edward Criscuolo

Computer Sciences Corp.

September 30, 1999

DRAFT

�
Introduction

This analysis is based on the material presented at the Triana SDR, April 30, 1999.

The Triana flight software is object-oriented , and implemented in C++. It is composed of 17 subsystems, grouped into two major areas. Each subsystem will breifly be examined.

Service Layer Subsystems

Mode Manager

TM – Task Manager

SH – Scheduler

Software Bus

SBLIB – Software Bus Library

SB – Software Bus Task

XB – 1553 Bus Controller

XI – 1553 Bus Controller In

XO – 1553 Bus Controller Out

XBISR – 1553 Bus Controller ISR

XR – 1553 Bus Remote Terminal

RI – Remote Terminal In

RO – Remote Terminal Out

RTISR – Remote Terminal ISR

FM – File Manager

HK – Housekeeping

Application Layer Subsystems

CI – Command Ingest

TO – Telemetry Out

SM – Software Manager

PN – Power Node Control

CS – Checksum

MS – Memory Scrub

ST – Self Test

Scripts

SC – Script Controller

SE – Script Executors

CVT – Current Value Table

DS – Data Storage

Mode Manager

No apparent CCSDS dependencies. Should be able to use as is.

TM – Task Manager Subsystem

Seems well isolated from CCSDS details. Weakest isolation is that the cTmSubsystem class (a subclass of the cTask class) has instance s of classes that are derived from CCSDS specific classes. For instance, cTmSubsystem contains an instance of the cTmHkTlmPkt class, which is a subclass of cGenericHkTlmPkt class, which is derived from the cCcsdsTlmPkt class.

It appears that this tasking subsystem can be made to cleanly co-exist with COTS VXWorks daemons, such as ftpd and ntpd.

SH – Scheduler Subsystem

Some of the requirements for this subsystem are affected by an IP based architecture. For instance, NTP would take over the following requirements:

Synchronizing the spacecraft clock to the ground.

Support jams and adjustments to the time code.

The cShSubsystem class contains instances of cShHkPkt and cTcHkPkt, which are both derived indirectly from cCcsdsTlmPkt.

The cPktProcessor and cShScheduleTbl classes also seem to have dependencies on the CCSDS packet classes.

SBLIB – Software Bus Library (Software Bus Subsystem)

This subsystem’s derived requirements are heavily impacted by an IP based design. The design of pipes and streams should be modified to use TCP sockets. The preference is to replace everything with sockets so as to ease the work required to migrate tasks onto multiple CPUs. The current design uses a subset of CCSDS packets as the application-level intertask communication format, and maps a combination of ApId and Cmd/Tlm fields to a Stream ID. This has to somehow be converted to a generic packet format and TCP/IP port numbers.

SB – Software Bus Task (Software Bus Subsystem)

This subsystem’s task has the usual task-specific housekeeping telemetry packet class (cSbHkPkt) that is derived indirectly from cCcsdsTlmPkt. It is also tightly coupled with the SBLIB.

1553 Bus General comments

It’s not clear at this time if the OMNI/flatsat will even have a 1553 bus, and even if so, whether it will implement an IP LAN solution (peer-to-peer) or simply provide a traditional 1553 solution (master-slave) in order to support legacy hardware subsystems such as the AOCS. An IP peer-to-peer LAN design would require that all peer nodes, except the C&DH, be implemented as “remote terminals” with packet I/O functions. A single “bus controller” task (resident in the C&DH) would be implemented as a sort of “software hub”, whose main function would be to poll every peer for packets and broadcast them to all other peers. It would also have to incorporate the peer level packet I/O functions for the C&DH. Because of the inherent inefficiency of all this copying, and the high degree of fragmentation that the 1553’s 64 byte packet size entails, this would likely be a low performance LAN.

XI – 1553 Bus Controller In

The XI subsystem has the usual indirect CCSDS dependencies in the packet processor and the housekeeping telemetry packet class (cXbHkPkt).

XO – 1553 Bus Controller Out

The XO subsystem has the usual indirect CCSDS dependencies in the telemetry parameters packet class (cXoTlmPkt) and the housekeeping telemetry packet class (cXbHkPkt).

XBISR - 1553 Bus Controller Interrupt Service Routine

No apparent CCSDS dependencies.

RI – 1553 Bus Remote Terminal In

RO – 1553 Bus Remote Terminal Out

RTISR – 1553 Bus Remote Terminal Interrupt Service Routine

The 1553 Bus Remote Terminal subsystems are intended to exist on the processor(s) of peripheral devices, such as Triana’s EPIC instrument. They are of no use to OMNI/flatsat unless we are planning to implement an IP LAN over 1553, and even then they would require modification.

FM – File Manager Subsystem

Final design was not complete at time of SDR. Design appears to have the usual indirect CCSDS dependencies in the packet processor class (cPktProcessor) and the housekeeping telemetry class (cFmHkTlmPkt). The use of emulated disk devices in RAM, bulk memory, and EEPROM may require the creation of hardware specific block copy software for the OMNI/flatsat. The FM currently uses CPIO format for file transfers to and from the spacecraft. This should be examined to see if it should be redesigned to use FTP instead, using the available COTS FTP daemon for VXWorks. The FM currently transfers files from the EPIC instrument over a custom high speed interface identified as the “QHSS”. This portion of the subsystem will have to be modified to conduct all transfers over the onboard LAN (whatever that turns out to be).

HK – Housekeeping Subsystem

The Housekeeping telemetry subsystem has the usual task-specific housekeeping telemetry packet class (cHkHkTlmPkt) that is derived indirectly from cCcsdsTlmPkt. It also has three instances of a combined housekeeping telemetry packet class (cCombinedHkPkt) that is directly derived from cCcsdsTlmPkt. It is not clear from the SDR materials whether the design confines itself to packet level data, or is directly constructing CCSDS transfer frames (although this does not appear to be the case). This requires further analysis by inspecting the actual code in order to verify.

CI – Command Ingest Subsystem

This subsystem is highly dependent on CCSDS formats down to the transfer frame level, and on SMEX-lite Comm card hardware specifics. It will have to be completely redesigned to eliminate these dependencies. Fortunately, commanding is accomplished with one command packet per transfer frame, so the removal of transfer frames from the design should be straightforward. The comm card hardware specific I/O functions will have to be replaced with an interface to TCP/IP packets, possibly through the (redesigned) Software Bus. This should have the net effect of simplifying the subsystem, especially since separate versions for flight HW and lab HW will no longer be required. The major piece of analysis/design that needs to be done is to determine how much of the functionality of the COP-1 command validation protocol is already being taken care of by TCP/IP’s normal retransmission protocol, and how much (if any) remains to be implemented in the CI subsystem.

TO – Telemetry Output Subsystem

This subsystem is also highly dependent on CCSDS formats down to the transfer frame level, and on SMEX-lite Comm card hardware specifics. It will have to be completely redesigned to eliminate these dependencies. Much of the redesign centers around the “downlink hardware object”, which currently has polymorphic subclasses for Spartan hardware, Triana flight hardware, and lab network interfaces. The real-time telemetry (VC0) is being constructed at the level of CCSDS packets stuffed into CCSDS transfer frames. This has to be redesigned to send individual packet level data to one or more TCP/IP or UDP/IP ports, possibly via the rewritten Software Bus. The recorded engineering data (VC1) and the science data (VC2�6) is not being sent as CCSDS packets. It is being sent as files. This is accomplished by inserting application level data into a CCSDS transfer frame. The application data consists of CPIO archive file format, as described in the FM subsystem. This needs to be completely redesigned in order to use standard FTP for all file transfers. The rest of the design for telemetry rate control and queue management should be reusable, and possibly some of the code. Transponder control (on/off) is also implemented in this subsystem, but the current OMNI/flatsat architecture has no I/O connection between the RF system and the C&DH. This functionality will migrate to the router HW, which may be implemented in a separate chassis. This needs to be addressed.

SM – Software Manager Subsystem

This task performs memory and table uploads and downloads. It has the usual task-specific housekeeping telemetry packet class (cSmHkPkt) that is derived indirectly from cCcsdsTlmPkt. It also has a dump file command class (cDumpFileCmd) that is a direct subclass of cCcsdsCmdPkt. Most of its functionality seems reasonably well isolated from CCSDS dependencies and unaffected by a change to an IP based architecture.

PN – Power Node Control Subsystem

This subsystem has command (cPnDacCmd) , houskeeping (cPnHkTlmPkt), and telemetry (cPnPrcsdTlm) classes that are directly or indirectly derived from CCSDS classes. Most of its functionality seems reasonably well isolated from CCSDS dependencies and unaffected by a change to an IP based architecture.

CS – Checksum Subsystem

This subsystem performs memory and table checksums. It has the usual task-specific housekeeping telemetry packet class (cCsHkTlmPkt) that is derived indirectly from cCcsdsTlmPkt. Other than that, its functionality seems reasonably well isolated from CCSDS dependencies and unaffected by a change to an IP based architecture.

MS – Memory Scrub System

This task is specific to the type of error detecting and correcting (EDAC) bulk memory card used on Triana. It will not be useful to OMNI/flatsat unless we use the same type of bulk memory.

ST – Self Test Subsystem

The Self Test subsystem is very specific to the exact hardware used on Triana (eg – QHSS, floating-point processor, 1553, EDAC). It would need to be totally rewritten to support the OMNI/flatsat hardware.

SC - Script Controller Task

SE - Script Executors Task

CVT – Current Value Table (object)

These two tasks and one shared object implement the Scripts subsystem. Performs all the ATS, RTS, telemetry & statistics monitoring, and limit checker functions. The two tasks have the usual housekeeping and command packet classes that are derived from CCDSD classes, but appear to be reasonably well isolated from CCSDS dependencies. The Current Value Table object is intimately tied to the CCSDS ApIDs and will need to be rewritten to use TCP/IP or UDP/IP port numbers.

DS – Data Storage Subsystem

The data storage subsystem is implemented on top of VXWorks’ file system, and each telemetry group resides on a separare disk volume. This is good. However, the data is stored as CCSDS packets. This is bad. This sybsystem will have to be partial redesigned to store and handle telemetry values as abstract data.

DRAFT

�PAGE �7�

