

An Informal Summary

of the

Triana C&DH

Flight Software

High Level Requirements

By

Edward Criscuolo

Computer Sciences Corp.

October 1, 1999

�
Introduction

The material in this document is directly derived from the Triana C&DH SDR presented on April 30, 1999. It is organized by subsystem, with the lower level service layer subsystems coming first, followed by the higher level application layer subsystems. It is intended to be used as a starting point for defining the C&DH flight software requirements for the OMNI/flatsat.

System Modes & Resets

The system shall be capable of operating in both a safeing mode, where only the minimal s/c health & safety functions are available, and a nominal mode where all s/c functions are available.

The system shall support transitions between these modes via commands.

The system shall support warm and cold resets via commands.

The system shall record system resets for eventual telemetry downlink.

The system shall generate resets in response to certain system events.

The system shall trap and handle processor generated exceptions.

Scheduler

Schedule all predictable I/O operations using a TDM (cyclic) scheduling scheme

Support a scheduling resolution (minor frame) of 10ms

Support a major frame scheduling resolution of 1 sec

Define predictable I/O operations using a system table

Provide means to enable/disable specific I/O events in the system table

Synchronize to the 1 Hz pulse

Respond to housekeeping requests

Support jams and adjustments to the time code

Provide capability to synchronize the spacecraft clock to the ground

Software Bus Library

Provide independent inter-task communications.

Provide centralized control of inter-task communications.

Maintain the integrity of the inter-task communications.

Support the following packet transfer mapping:

One-to-one

One-to-many

Support CCSDS packet format

Derived Requirements

All Data Transfers will use Packet Objects, not Packet Data.

A Stream shall be defined as the medium onwhich a CCSDS Packet is sent.

Packets arriving on a Stream shall be routed to 0..8 Pipe destinations.

A Stream shall be defined by an entry in a Stream Definition Table.

A Stream Definition shall include the:

the maximum number of currently active messages on this Stream, and

a List of the Destination Pipes to which traffic on this Stream gets routed.

A Stream ID is the combination of CCSDS ApID and Command/Telemetry fields.

A Pipe shall be defined as the medium onwhich a CCSDS Packet is received.

A Pipe shall be defined by an entry in a Pipe Definition Table.

A Pipe Definition shall include the:

the maximum number of active messages that this Pipe can hold (pipe depth).

A mechanism shall be provided such that any Pipe can be arbitrarily Enabled or Disabled independent of any other Pipe. This allows traffic written to an inactive Pipe to be eliminated without its presence wasting SBLIB resources.

Records errors as system events.

Software Bus Task

Provide an ability to throttle the display of the SBLIB Error Log.

Provide a means of reporting SBLIB and SB Task Housekeeping data.

Derived Requirements:

Process the last 10 entries in the SBLIB Error Log.

Create a System Event.

Route to the System Debug Stream.

Include Information in the standard Housekeeping packet containing details on

One Stream

Four Pipes

1553 Bus Controller

The Bus Controller Software (XB) shall act as a bi-directional communications interfaces between the Software Bus (SB) and the 1553 Bus hardware.

The XB Software will execute on the one processor whose 1553 Chip has been selected as the Bus Controller.

All communication between the SB and the XB Software will involve CCSDS packets.

The XB Software shall have support for two 1553 busses;

an “A” primary bus and

a “B” secondary bus.

The XB Software shall maintain independent housekeeping data for process and control status.

Derived Requirements:

The XB Software shall be separated into three functional pieces.

Bus Controller pre-transmission; BC-IN (X I).

Bus Controller Interrupt Service Routine (XBISR).

Bus Controller post-transmission; BC-OUT (XO).

1553 Remote Terminal

The Remote Terminal Software (XR) shall act as a bi-directional communications interface between the Software Bus (SB) and the 1553 Bus hardware.

For Triana, this software will reside on the EPIC processor.

For other missions, the XR Software is expandable to multiple CPU’s.

The XR Software can execute on any processor whose 1553 Chip is NOT the Bus Controller.

The 1553 Chips on these processors will be selected as Remote Terminals.

All communication between the SB and the XR Software will involve CCSDS packets.

The XR Software shall have support for two 1553 busses;

an “A” primary bus and

a “B” secondary bus.

The XR Software shall maintain independent housekeeping data for process and control status.

File Manager

Provide for the uplink of files

Task level loadable modules

Data files for system tables

Provide for the downlink of files

Science data files

Stored engineering data files

Log files of debug text messages

Provide for the management of on-board file system

File copy, move, and delete

Directory create, remove, and listing

Ram disk device create

Provide for transfers of files between processors over the QHSS interface

Provide a single ground command for each file operation, regardless of the source and/or destination processors

Housekeeping

Receive individual housekeeping data packets from all SW subsystems

Generate combined SW status packets

Verify that all critical/expected subsystems are responding to housekeeping data requests

Reset processor watchdog timer on command (scheduled once per second)

Generate dummy event message on command

Command Ingest

Accept, validate, and distribute ground commands

Support CCSDS telecommand standards

Implement the COP-1 command validation protocol

Support 2Kbit/sec uplink rate

Derived Requirements:

Support two types of hardware interfaces: flight-like and network

For flight-like hardware:

Ingest CCSDS codeblocks over the PCI bus from the comm card

Empty the codeblock FIFO on the comm card 10 times each second

Assemble codeblocks into CCSDS transfer frames

For network hardware:

Ingest CCSDS transfer frames over a socket connection from ITOS

For any hardware:

Validate transfer frames and strip out the CCSDS packets (one packet per transfer frame)

Validate packets and send them on the Software Bus

Send the latest CLCW to the downlink object whenever it changes

Update command barker time for each new command

Send housekeeping data on request

Telemetry Output

Receive CCSDS telemetry packets from sources

Transmit data to downlink hardware interface in CCSDS transfer frames

Construct telemetry streams of virtual channels

Derived Requirements:

Selectively discard source packets via filtering

Construct fixed length CCSDS transfer frames

Assign virtual channels as follows:

0) Real-time Data,

1) Stored Engineering Data,

2-6) Science Data Channels, and

7) Fill Channel

Support downlink rates not to exceed 200 kbps

Limit real-time telemetry to 10 kbps, 16 kbps, 32 kbps, or 64 kbps

Support network capability for development environment

Software Manager

Respond to loading/dumping selected areas of onboard memory or system tables

Memory load/dump - follow SMEX standard load of 200 bytes of data per packet

File load/dump - follow the new design of table file operation

Provide periodic monitoring of selected memory locations

Sample up to 10 Hz rate

Use a system table to define dwell rate and location

Respond to housekeeping requests

Power Node Control

Dynamically control the battery charging hardware

Provide a software Amp*Hour Integrator (AHI) function

Read the Power Node telemetry packet 10 times a second

Compute a Power Node DAC command 10 times a second

Issue a telemetry packet of current voltages/temps

Issue Housekeeping status packet

Respond to enable/disable ground commands

Checksum

Periodically recalculate memory and table checksums to verify memory contents, and detect checksum errors

Recalculate the checksum on-orbit of tables loaded from the ground, or changed by the ground, during table load activity (see Table Load requirements)

Checksum error validation shall be enabled or disabled via a ground command

Checksum processing for a particular table or memory area shall be able to be enabled or disabled by the ground

Checksum errors shall be reported to the ground in housekeeping telemetry and as significant event messages

Memory Scrub

The type of RAM that is used on the Bulk Memory Card has a requirement that every location be error detected and corrected (EDAC)

The flight software shall scrub memory by doing a memory read followed by a memory write at each location

The memory areas that need to be scrubbed shall be maintained in a table

Memory scrubbing processing for a memory area shall be able to be enabled or disabled by the ground

Memory scrub errors shall be reported to the ground in housekeeping telemetry and as significant event messages

Self Test

Verify the functionality of major hardware components of the Comp Hub

Provide on-orbit hardware selftest functions for all the major hardware components of the Comp Hub

Shall not interfere with the normal processing of the flight software

Report status on the major Comp Hub hardware components as part of housekeeping telemetry

Derived Requirements:

Verify the functionality of the following Comp Hub hardware components:

QHSS

Floating-Point Processor

1553 BCRT (Summit)

EDAC

Verify the RAM and bulk memory

Scripts

To Implement ATSs, RTSs and Spacecraft Safeing using a Uniform Method, using a Uniform Set of Tools.

To Provide an On-Board Method of:

Monitoring the Spacecraft Data. (Telemetry, Memory , CPU Inputs)

Making Algorithmic Decisions based on this Monitoring.

Sending Spacecraft Commands (possibly) based on these Decisions.

Pausing until an Absolute Time has arrived.

Pausing for a specified amount of time.

To implement the above using all the features of a Completely Structured Algorithmic Language.

To provide the ability to “run” a STOL-like Language on the spacecraft.

Derived Requirements:

A Tool shall be developed to Translate STOL Procedures into a C++ Script Source File.

These C++ Files will then be compiled, thus creating a loadable/executable Module.

These Modules will be loaded to on-board memory similar to other pieces of flight software.

Upon command, these modules will begin execution.

DRAFT

� PAGE �2�

DRAFT

